Contents lists available at ScienceDirect

Ceramics International

journal homepage: www.elsevier.com/locate/ceramint

Enhanced luminescence of a Eu^{3+} -activated double perovskite (Na, Li) LaMgWO₆ phosphor based on A site inducing energy transfer

Quan Liu^{a,b}, Jialin Shen^c, Tian Xu^{a,b}, Lixi Wang^{a,b}, Jing Zhang^c, Qitu Zhang^{a,b,*}, Le Zhang^{d,**}

^a College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

^b Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing 210009, China

^c Nanjing Center, China Geological Survey, Nanjing 210016, China

^d Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering Jiangsu Normal University, Xuzhou 221116,

China

ARTICLE INFO

Article history: Received 7 May 2016 Received in revised form 26 May 2016 Accepted 28 May 2016 Available online 30 May 2016

Keywords: Double perovskite Phosphors Structure evolution White light emitting diodes

ABSTRACT

Li⁺ ion substituted Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ phosphors were successfully synthesized by an improved sol-gel method using citric acid and polyethylene glycol as complexing agents. The structural evolution was systematically investigated by X-ray diffraction with Rietveld structure refinement and Raman spectra. The layered ordering of A-site cations and a second-order Jahn-Teller distortion of B' cations simultaneously existed in this double perovskite. The decreased symmetry and lattice parameters within the same space group *C2/m* were observed from the Li⁺ substituted powders. Upon increasing the Li⁺ concentration, the absorption intensities of the 4f-4f transitions of Eu³⁺ monotonically increased. Likewise, the intensity of ${}^{5}D_{0}{}^{-7}F_{2}$ monotonically increased under the excitations of both near-ultraviolet and blue light, with an enhancement of ten- and six-fold, respectively. The relative intensity ratio of red/ orange emissions gradually increased, and the CIE chromaticity coordinates gradually approached those of standard red light. "A site inducing energy transfer" in double perovskite was achieved by selecting a substitution element with a small radius.

© 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

1. Introduction

White light emitting diodes (LEDs) have attracted much attention in recent years. A high luminescence efficiency, low power consumption, and environmental friendliness are some of the advantages of white LEDs [1–4]. As known, white light comprises three primary colors. Tricolor phosphors excited by blue LEDs or near-ultraviolet (NUV) LEDs have also been extensively researched [5–7]. However, the luminescence intensity of the red phosphors for the UV LED chip such as $Y_2O_2S:Eu^{3+}$ or $Y_2O_3:Eu^{3+}$ is much lower than those of ZnS:Cu⁺, Al³⁺ green and BaMgAl₁₀O₁₇:Eu²⁺ blue phosphors, causing the white light to deviate from natural light [8]. Therefore, new red phosphors with efficient absorption, such as tungstate [9,10]/molybdate [11,12], titanate [13,14] and phosphate[15,16], are urgently needed to compensate the red emission and improve the conversion efficiency.

** Corresponding author.

Tungstate and molybdate have recently been widely investigated as excellent hosts because of their broad and strong charge transfer band (CTB) in the NUV-blue band and high quenching concentrations of activator ions. Typically, the double perovskite oxides reported are mainly A_2BMO_6 (A=Ba; B=Ca, Mg; M=W, Mo) [17–19], due to the higher excitation efficiency of CTB from W/Mo-O than from WO₄/MoO₄. As is known, the magnetic dipole transition is permitted and the electric dipole transition is allowed only when the europium ion occupies a site without an inversion center. The slight tilting of BO₆ in A₂BMO₆ has little effect on reducing the symmetry, and the intensity of the electric dipole transition is lower. Then, the emission transition is ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ (594 nm) rather than ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (~615 nm), leading to an emission of the color orange-red rather than pure red. The " $A^+ + A^{3+}$ " mode was used to substitute for the "2A²⁺" mode to provide a lower site symmetry for the A-site and thereby change the dominant transition to improve the purity of red [20,21]. As reported, double perovskite NaLaMgWO₆:Eu³⁺ powder has proven to be an excellent phosphor due to its high energy transfer efficiency of CTB and because its luminescence intensity is much higher than that of the red phosphors presently used [22]. However, the excitation

^{*} Corresponding author at: College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.

E-mail addresses: ngdzqt@163.com (Q. Zhang), njutzl@163.com (L. Zhang).

http://dx.doi.org/10.1016/j.ceramint.2016.05.191 0272-8842/© 2016 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

wavelength in the range of 300–330 nm is far from the emission wavelength of the NUV-LED chip (370–390 nm) or blue chip (\sim 460 nm). Therefore, methods for enhancing the luminescence intensity under the excitation of near-UV light or blue light have attracted much attention.

In a previous work [20], Gd^{3+} (1.11 Å, CN=9) ions with a smaller radius were selected to substitute for La^{3+} (1.36 Å, CN=12) ions based on the "A site inducing energy transfer" in double perovskite, resulting in enhanced luminescence intensity under the excitation of near-UV light and blue light. "A site inducing energy transfer" in double perovskite can result in a luminescence enhancement of Eu^{3+} , which is based on the selection of a substituent element of small radius. As the radius of Li⁺ (0.92 Å, CN=8) is smaller than that of Na⁺ (1.39 Å, CN=12), it is interesting to consider whether the luminescence properties could be enhanced by using Li⁺ to substitute for Na⁺. Additionally, a smaller tolerance factor will be achieved if Na⁺ is substituted by Li⁺ with a smaller radius. The symmetry will then be lower and the parity-forbidden transition is more easily broken, resulting in better color purity. In this paper, based on the above ideas, Li⁺ ions were selected to substitute for the Na⁺ ions, attempting to enhance the luminescence of this phosphor system. Rietveld structure refinement and Raman spectra were used to confirm the structure's change. An "A site inducing energy transfer" theory was proposed to enhance the luminescence of a (Na, Li)LaMgWO₆: Eu³⁺ phosphor under near-UV and blue light. The relationship between the changed environment and the emissions of Eu³⁺ was analyzed in detail to explain its changed emission.

2. Experimental

All powder samples were synthesized by a sol-gel method using citric acid and polyethylene glycol as complexing agents. The starting materials were La₂O₃ (99.99%), Eu₂O₃ (99.99%), Li₂CO₃ (AR), NaNO₃ (AR), Mg(NO₃)₂ (AR), (NH₄)₁₀W₁₂O₄₁ (AR), HNO₃ (AR), NH₃·H₂O (AR), citric acid (AR) and polyethylene glycol (PEG, Mw between 570 and 630), all of which were directly used without any further purification. The mole ratio of citric acid to the total metallic ions was 3.0:1.0. Stoichiometric rare earth oxides and Li₂CO₃ were dissolved in HNO₃ under vigorous stirring (solution A, S_A), and stoichiometric amounts of all nitrates and the deionized water were added and stirred (solution B, S_B). The ammonium tungstate was dissolved in deionized water (solution C, S_C). The citric acid and PEG were added to the mixed solution of S_A and S_B , and then solution C was gradually added into the mixed solution of all of the metallic ions. The pH value of the solution was then modulated to 6.0-8.0. The temperature in all of the above processes was 60-70 °C, and the mixed solution was then heated to 80–90 °C and continuously stirred until becoming a transparent sol and then a transparent gel. The transparent gel was heated to 180-200 °C to undergo a combustion reaction to become a spumous and fluffy precursor. Finally, the precursor was pre-calcined at 800 °C for 3 h and then calcined at 1100 °C for 6 h. A series of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) powders was prepared.

The crystalline phases were determined by X-ray diffraction (XRD, smartlabTM 9 kW, Rigaku, Japan) using Cu K α radiation (λ =1.5406 Å) in the range of 5–80° with a step size of 0.02° and scanning rate of 5°/min. Structure refinements were performed using the Rietveld method as implemented in the General Structure Analysis System (GSAS) software. Raman spectra were collected using a Raman spectrometer (Renishaw, RM1000, Britain) with a 514 nm laser beam as the light source. The photoluminescence spectra were measured using a fluorescent spectrophotometer (Lumina, America). The fluorescent decay curves

were tested by a fluorescence spectrometer (FLsp920, British) with the detection wavelength 615 nm. All measurements were taken at room temperature.

3. Results and discussion

Fig. 1(a) and (b) show the excitation spectra of the NaLa_{0.95}Eu_{0.05}MgWO₆ powders. It could be seen that the excitation spectra of $\lambda_{em} = 615$ nm and $\lambda_{em} = 590$ nm have similar shapes, with a strong broad CTB centered at \sim 320 nm ($O^{2-} \rightarrow W^{6+}$) and the characteristic *f*-*f* absorption peaks of Eu^{3+} at 395 nm (${}^{7}F_{0}-{}^{5}L_{6}$) and 465 nm $({}^{7}F_{0}-{}^{5}D_{2})$. However, the excitation intensity for $\lambda_{em} = 615 \text{ nm}$ was far stronger than that for $\lambda_{em} = 590 \text{ nm}$. The corresponding emission spectra for \sim 320 nm, 395 nm and 465 nm are shown in Fig. 1(c). All emission spectra had weak magnetic dipole transitions (${}^{5}D_{0}$ - ${}^{7}F_{1}$, 590 nm) and very strong electric dipole transitions (${}^{5}D_{0}-{}^{7}F_{2}$, 615 nm), indicating that the Eu $^{3+}$ ions were located in a very low crystal symmetry site in this double perovskite NaLaMgWO₆ lattice. The only difference was that the CTB excitation had the strongest emission intensity, eight and four times those of λ_{ex} =395 nm and λ_{ex} =465 nm, respectively. Based on this, the phosphors could only be used for NUV chips for white LEDs. Therefore, much work was attempted to enhance the intensity, and a stronger emission close to the practical emission intensity was expected under the excitation of near-UV band or blue light. In this paper, A-site substitution was used to enhance the red luminescence under the excitations of near-UV and blue light.

3.1. Structural evolution of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$

The XRD patterns of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ are shown in Fig. 2 and can be readily indexed to the monoclinic double perovskite structure of NaLaMgWO₆ (JCPDS #88-1761). The tolerance factors (t, formula 1) of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ are shown in Table 1, which determine the crystal structure of double perovskite [23]. r_A, r_{A'}, r_B, r_{B'} and r_O are the radii of A-site, A'-site, B-site, B'-site and oxygen ions, respectively. Upon increasing the concentration of the smaller radius Li⁺, the tolerance factor gradually decreases from 0.948 to 0.868. Clearly, the structure of double perovskite exists stably with no impurity phase when 0.868 $\leq t \leq 0.948$.

Fig. 1. Excitation spectra (a: λ_{em} =590 nm; b: λ_{em} =615 nm) and (c) emission spectra of NaLa_{0.95}Eu_{0.05}MgWO₆ powders.

Fig. 2. XRD pattern of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1).

Table 1.

Crystallographic data of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$.

X values	0	0.1	0.3	0.5	0.7	0.9	1
Tolerance factor	0.948	0.940	0.924	0.908	0.892	0.876	0.868
Space group	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m	C2/m
a, Å	7.8147	7.8176	7.8120	7.8134	7.8111	7.8079	7.8083
b, Å	7.8211	7.8220	7.8187	7.8175	7.8122	7.8098	7.8105
c, Å	7.8961	7.8939	7.8942	7.8932	7.8910	7.8886	7.8860
V, Å ³	482.705	482.605	482.169	482.114	481.522	481.03	480.941
wRp, %	9.58	9.55	10.38	9.35	10.47	10.08	11.60
Rp, %	6.69	7.19	7.56	6.94	7.77	6.89	8.01

Crystalline and ordered domain sizes for A and B sites with different $\mathrm{Li^+}$ concentrations.

x	CS/nm	ODS-A/nm	ODS-B/nm
0	78.7	72.1	54.3
0.1	82.7	77.3	65.8
0.3	80.5	77.5	71.3
0.5	78.3	77.4	74
0.7	82.5	78.7	67.2
0.9	92.8	81.2	62.8
1	92.9	81.7	60.7

Fig. 4. Ratios of ordered domain size (ODS)/crystalline size (CS) for A and B sites of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$ powders (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) with different Li⁺ concentrations.

$$t = \frac{r_A + r_{A'} + 2r_0}{\sqrt{2}(r_B + r_{B'} + 2r_0)} \tag{1}$$

In addition, XRD was highly sensitive to the presence of cation ordering, which could be determined by the presence of superlattice reflections. The superlattice diffraction peaks at ~19.0° (0 1 1) and ~38.0° (2 1 1) indicate the long-range ordering of B-site cations (Mg/W) in a rock-salt fashion, and the appearance of a 25.6° (1 1 1) peak demonstrates the layered ordering of A-site cations (Na/Li/La/Eu) [24,25]. The layered ordering of A-site cations creates a bonding instability that is compensated for by a second-order Jahn-Teller (SOJT) distortion of the B' cations [26]. These two distortions are synergistic, and the removal of one leads to the disappearance of the other.

Fig. 3. Rietveld refinement of the observed XRD pattern for (a) NaLa_{0.95}Eu_{0.05}MgWO₆ and (b) Na_{0.5}Li_{0.5}La_{0.95}Eu_{0.05}MgWO₆.

Fig. 5. Raman spectra in the range of (a) 80–1200 cm⁻¹ and (b) 80–200 cm⁻¹ for $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$ powders (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) with different Li⁺ concentrations.

Fig. 6. Excitation (λ_{em} =615 nm) spectra of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1).

XRD was only used to perform a preliminary structural characterization of these samples, and Rietveld refinements were carried out to confirm the structures and extract the lattice parameters. Generally, the undistorted and fully ordered AA'BB'O₆ perovskite has tetragonal symmetry and belongs to the space group *P4/nmm*. However, the octahedral tilting would lower its symmetry. The undoped NaLaMgWO₆ has degenerated into a monoclinic unit cell, and its two possible space groups are *P2*₁ (Glazer tilt system a⁻a-c⁺, from JCPDS Card.) and *C2/m* (a⁰b⁻c⁰), and their approximate cell dimensions are $\sqrt{2} a_p \times \sqrt{2} a_p \times 2a_p$ and $2a_p \times 2a_p \times 2a_p$ (a_p being the cell edge of the basic ABO₃ cubic perovskite) [24,27], respectively. Therefore, for all samples, the starting models for the refinements of the phases were taken from the double perovskite space groups of *P2*₁ and *C2/m*, respectively.

The results showed that the starting model with C2/m provides a better fitting for all samples with different doping concentrations of Li⁺, even with a complete substitution of Li⁺ for Na⁺. Typical observed and calculated best fits for the samples are shown in Fig. 3 for x=0 (a) and x=0.5 (b), including the difference in the powder diffraction profiles and the expected Bragg reflections. The refined R-values were 9.58%/9.35% (wRp), 6.69%/6.94% (Rp) for x=0/0.5, respectively. When x=0, the lattice parameters were $7.8147 \times 7.8211 \times 7.8961$ Å, and the lattice volume was 482.605 Å³. When x = 0.5, the lattice parameters were $7.8134 \times 7.8175 \times 7.8932$ Å, and the lattice volume was 482.114 Å³. These results suggest that the refinements are in good agreement with the space group in all respects, and the tilting of the BO₆ octahedron weakens the symmetry of double-perovskite. All samples belong to the tilt system $a^0b^-c^0$, where the b^- indicates an out-of-phase tilt around the b-axis, and (Na/Li)LaMgWO₆ powders with a C2/m space group have a larger lattice volume, which is beneficial to enlarging the distance between neighboring Eu³⁺ ions.

The structural refinements indicate that the degree of cation ordering in these compositions is nearly complete. Generally, if all crystals are assumed to be free of strains and faults, the peak broadening in the X-ray diffraction pattern is due only to the area of the reflecting planes, which is often taken as the crystalline size, according to the Scherrer formula (formula (2)) [20], where *L* is the crystalline size (nm), λ the wavelength of the X-ray source (nm), *FWHM* the full width at half maximum (rad), and θ_0 the diffraction angle (deg). *L* is considered as an average crystal dimension perpendicular to the reflecting planes. Nevertheless, *L* should be considered as the ordered domain's size if *FWHM* is calculated according to the superlattice reflection peaks from the XRD

Fig. 7. Emission spectra of Na_{1-x}Li_xLa_{0.05}Eu_{0.05}MgWO₆ (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) (a: λ_{ex} =CT band; b: λ_{ex} =395 nm; c: λ_{ex} =465 nm) and (d) the intensity variation of ${}^{5}D_{0}{}^{-7}F_{2}$ transition under different excitations.

patterns. Here, the long-range ordering of B-site cations (Mg/W) in rock-salt fashion is observed from the superlattice peaks at $\sim 19^{\circ}$ (0 1 1) and $\sim 38^{\circ}$ (2 1 1), while the layered ordering of the A-site cations Na/Li/La/Eu is obtained from the diffraction peak at $\sim 25^{\circ}$ (1 1 1).

$$L = \frac{0.9\lambda}{FWHM \times \cos \theta_0} \tag{2}$$

Based on the above statements, the ordered domain sizes (ODS) and the crystalline size (CS) for the A and B sites of $Na_{1-x}Li_{x}La_{0.95}Eu_{0.05}MgWO_{6}$ samples were calculated and are listed in Table 2. It can be seen that the ODS-A sites increased monotonically in the range of 72-82 nm, while the ODS-B sites first increased and then decreased in the range of 54-74 nm. This is because the type of ions on the A-site and their amount changes with the gradual substitution of Li⁺ for Na⁺, and the ordering of the ions on the A-site would vary accordingly, even at the same calcination temperature. The SOJT distortion of the B' cations, compensating for the instability of the A-site cations, led to the variation of the ODS-B sites. The ratios of ODS/CS for the A and B sites of all samples are plotted in Fig. 4. The ODS/CS for the A-site was relatively stable approximately 0.9, while that for the B-site has broader variability. The ODS/CS for both the A-site and B-site first increased and then decreased and reached a maximum value when x=0.5. This is because Na/Li =1:1 is more conductive than the non-equal proportion (e.g., 0.1/0.9 or 0.9/0.1) to obtain a more ordered arrangement. Therefore, doping with Li⁺ ions affected the ordered domain sizes for both the A-sites and B-sites.

Fig. 5 shows the Raman spectra of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$ powders with different Li⁺ concentrations. Both $NaLaMgWO_6$ and

 A_2CaMoO_6 (A=Sr/Ba) have a double perovskite structure with a rock-salt ordering of B/B' ions, and they may have a great similarity in their Raman spectra. According to Ref. [28], there are four Raman active modes in Ba₂CaMoO₆: $T_{2g}(1)$, $T_{2g}(2)$, Eg and A_{1g} , located at ~105, ~407, ~647 and ~ 804 cm^{-1} , respectively. For NaLaMgWO₆, its Raman spectrum would be more complex than that of Ba₂CaMoO₆ due to its lower symmetry (cubic Fm3m for Ba_2CaMoO_6 , monoclinic C2/m for NaLaMgWO₆). The tilting junction of the $(Mg/W)O_6$ octahedra and the layered order of Na/La would result in the splitting of $T_{2g}(1)$ and $T_{2g}(2)$ in the ranges of $100-200 \text{ cm}^{-1}$ and $300-500 \text{ cm}^{-1}$ into multi-peaks. The $T_{2g}(1)$ mode is an A-site cation related vibration resulting from an A-site cation and coordinated oxygen atoms, and the A_{1g} mode is a fully symmetric breathing vibration of oxygen octahedrons. Furthermore, the A_{1g} mode has a relatively small correlation radius, and its vibration is only confined in the short-range correlation of the atoms, while the $T_{2g}(1)$ mode has a larger correlation radius. Thus, $T_{2g}(1)$ is sensitive to A-site substitution, whereas A_{1g} is sensitive to B-site substitution. With the increasing Li+ concentration, both the $T_{2g}(1)$ mode and A_{1g} mode significantly weakened. The weakened $T_{2g}(1)$ mode resulted from the A-site doping, while the weakened A_{1g} mode resulted from the SOJT distortion of the B' cations.

3.2. Photoluminescence of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$

Fig. 6 shows the excitation spectra of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$ phosphors with different Li^+ concentrations (λ_{em} =615 nm). The spectra consist of a broad band due to the charge transfer transition from oxygen to tungsten (O^{2-} -W⁶⁺, centered at ~320 nm) and some sharp lines due to the

Fig. 8. Luminescence decay curves (λ_{ex} =465 nm) of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ (a: x=0; b: x=0.3; c: x=0.7; d: x=1).

Fig. 9. Emission intensity ratio of ${}^{5}D_{0}{}^{-7}F_{2}/{}^{5}D0{}^{-7}F_{1}$ transition for Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ phosphors (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) under different excitations.

intra-4*f* transitions of Eu³⁺, which were at 395 nm (⁷F₀-⁵L₆ transitions) and 465 nm (⁷F₀-⁵D₂ transitions) for all compositions. The presence of a CTB in the excitation spectrum when monitored for Eu³⁺ emissions (615 nm) was a clear indication of the non-radiative energy transfer from the host to Eu³⁺. Upon increasing the Li⁺ concentration, the absorption intensity of CTB varied in a small range, whereas the absorption intensities of the 4*f*-4*f* transitions of Eu³⁺ monotonically increased. Accordingly, the electric dipole transition intensities of the Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ phosphors

Fig. 10. Relationship between the intensity of ${}^{5}D_{0}{}^{-7}F_{2}$ ($\lambda_{ex}=465$ nm) and Ln-O bond distance of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1).

also monotonically increased under the excitations of 395 nm and 465 nm (Fig. 7), and they reached the maximum for a complete substitution. The luminescence intensities of the ${}^5D_0{}^{-7}F_2$ transition for x=1 were enhanced by approximately ten and six times comparing to that of x=0 under the excitations of 395 nm and 465 nm, respectively. In contrast, upon increasing the Li⁺ concentration, the electric dipole transition intensities varied in a small range under the excitation of the charge transfer band. The emission intensity of $\lambda_{ex}=395$ nm surpassed the intensity of the charge transfer band excitation at x > 0.7, while the intensity of $\lambda_{ex}=465$ nm surpassed the intensity of the charge transfer band excitation at $x \ge 0.5$. It was also significant that the emission intensities of $\lambda_{ex}=395$ nm for all compositions.

The decay curves (λ_{ex} =465 nm) of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆

Fig. 11. (a) CIE chromaticity coordinates of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$ (x=0, 0.1, 0.3, 0.5, 0.7, 0.9, 1) under different excitations and (b) the photo of $LiLa_{0.5}Eu_{0.5}MgWO_6$ phosphor.)

(*x*=0, 0.3, 0.7, 1) phosphors are shown in Fig. 8. All of the data are fitted with a single experimental function $I=I_0 \exp(-t/\tau)$, where I_0 is the initial emission intensity for t=0, and τ is the decay lifetime. The calculated lifetimes are summarized in Fig. 8. It is clear that the ⁵D₀ lifetime of Eu³⁺-doped Na_{1-x}Li_xLaMgWO₆ decreased upon increasing the concentration *x*. Usually, for a given emitting ion, a long decay time was characteristic of the most symmetrical surroundings, while a short decay value was observed when site distortion occurred [29]. Increasing the Li⁺ ion concentration led to decreased tolerance factors and lower symmetry and thereby a shorter ⁵D₀ lifetime.

According to the Judd-Ofelt theory, the magnetic dipole transition is permitted. However, the electric dipole transition is allowed only when the europium ion occupies a site without an inversion center, and the intensity is significantly affected by the symmetry in the local environments around the Eu³⁺ ions [29]. If the Eu³⁺ ions occupy an inversion symmetry site, the magnetic dipole transition ${}^{5}D_{0}$ - ${}^{7}F_{1}$ is dominant. On the other hand, for the electronic dipole transition, ${}^{5}D_{0}-{}^{7}F_{2}$ is the dominant transition. The intensity ratio of R=I $({}^{5}D_{0}-{}^{7}F_{2})/I ({}^{5}D_{0}-{}^{7}F_{1})$ is a measure of the Eu³⁺ ion's site symmetry, and the emission intensity ratio of ${}^{5}D_{0}-{}^{7}F_{2}$ $(615 \text{ nm})/{}^{5}\text{D}_{0}$ - ${}^{7}\text{F}_{1}$ (590 nm) for Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ phosphors under different excitations is shown in Fig. 9. The ratios tended to increase and varied in a broad range for all three excitations upon increasing the Li⁺ concentration. The ratio increased from 8.59 to 15.71 under the excitation of 395 nm, which means that the electric dipole transition held a dominant position. Upon increasing the concentration of Li⁺, the tolerance factor gradually decreased, and the structure deviated from the ideal cubic phase, leading to a lower symmetry of the structure. For the hypersensitive electronic dipole transition, the parity-forbidden transition was broken because of the gradually decreased symmetry. The ratio of the ${}^{5}D_{0}-{}^{7}F_{2}/{}^{5}D_{0}-{}^{7}F_{1}$ transitions increased upon increasing the concentration of Li⁺, and then the red emission played a dominant role.

As we said above, the decreased tolerance factor and the high distortion coordination polyhedron around Eu^{3+} would further break the parity forbiddenness, so the transition probability of the electric dipole transition would increase. At the same time, in the structure of $Eu^{3+}-O^{2-}-A^+$, when $A^+=Li^+$, the covalence between the activator Eu^{3+} and the anion (O^{2-}) would increase due to the smaller ionic radius $(0.92 \text{ Å} < 1.39 \text{ Å}(Na^+))$. This would further enhance the luminescence of the electric dipole transition of Eu^{3+} . In addition, when Li^+ substitutes for Na⁺, the lattice volume

gradually decreased (Table 1), and the mean bond length of Ln-O also decreased (data according to the structure refinement). The change in the bond length of Ln-O with the luminescence intensity is shown in Fig. 10, with a short bond length corresponding to a higher luminescence intensity. A short bond length means a strong crystal field, which is beneficial to the energy transfer and thus enhances the luminescence of Eu³⁺. The greatly enhanced radiation transition of the electric dipole of Eu³⁺ and shortened lifetime were due to the low crystal symmetry and especially the shortened Eu-O bond length. This is called "A site inducing energy transfer" [20], which results in a luminescence enhancement of Eu^{3+} in double perovskite. Here, the "A site inducing energy" transfer" was proven to be effective. This regularity will continue guiding us to further choose other host elements to enhance the luminescence of Eu³⁺ and will provide guidance for the performance enhancement in other rare earth ion doped luminescence materials.

Fig. 11 shows the CIE chromaticity coordinates of $Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO_6$ phosphors under different excitations and a photo of a LiLa_{0.5}Eu_{0.5}MgWO_6 phosphor. The coordinates gradually approach those of standard red light (0.67, 0.33), with an increased R/O value. The coordinates of LiLa_{0.95}Eu_{0.05}MgWO_6 under the excitation of 395 nm were (0.6636, 0.3361), which are rather close to the edge of the CIE diagram. This means that the substitution of Li⁺ to Na⁺ not only enhances the luminescence intensity and availability of different excitation chips but also greatly optimizes the red light quality.

4. Conclusions

In this paper, a series of Na_{1-x}Li_xLa_{0.95}Eu_{0.05}MgWO₆ phosphors were successfully synthesized. The ODS/CS for both the A-sites and B-sites reached maximum values at x=0.5. The weakened Raman $T_{2g}(1)$ mode resulted from A-site doping, while the weakened A_{1g} mode resulted from the SOJT distortion of the B' cations. The enhanced luminescence intensity under the excitation of near-UV light or blue light was achieved by selecting a substitution element with a smaller radius by substituting Na⁺ with Li⁺. The decreased lifetime, increased intensity ratio of red/orange emission and optimized red light quality resulted from the decreased symmetry. The "A site inducing energy transfer" was proven to be effective, and this regularity would continue to guide us to choose other host elements to enhance the luminescence of Eu^{3+} .

Acknowledgments

The author acknowledges the generous financial support from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the National Natural Science Foundation of China (51402133, 51202111).

References

- [1] S. Sekar, P. Arunkumar, D. Jeyakumar, N. Lakshminarasimhan, White light emission in alkali metal ion co-doped single host lattice phosphor Sr₃B₂O₆: ⁺,Eu²⁺,A+[A=Li, Na and K], Ceram. Int. 41 (3) (2015) 3497–3501.
- [2] L. Tian, L. Wang, L. Zhang, Q. Zhang, W. Ding, M. Yu, Enhanced luminescence of Dy³⁺/Bi³⁺ co-doped Gd₃Al₅O₁₂ phosphors by high-efficiency energy transfer, Mater. Sci. Mater. Electron. 26 (2015) 8507-8514.
- [3] P. Pust, V. Weiler, C. Hecht, A. Tucks, A.S. Wochnik, A.K. Henss, D. Wiechert, C. Scheu, P.J. Schmidt, W. Schnick, Narrow-band red-emitting Sr[LiAl(3)N(4)]: Eu(2)(+) as a next-generation LED-phosphor material, Nat. Mater. 13 (9) (2014) 891-896.
- [4] R. Cao, Q. Xiong, W. Luo, D. Wu, X. Fen, X. Yu, Synthesis and luminescence properties of efficient red phosphors $SrAl_4O_7:Mn^{4+}, R+(R+=Li+, Na+, and$ +) for white LEDs, Ceram. Int. 41 (5) (2015) 7191-7196.
- [5] R. Yu, R. Luan, C. Wang, J. Chen, Z. Wang, B.K. Moon, J.H. Jeong, Photo-luminescence properties of green-emitting ZnGa₂S₄:Eu²⁺ phosphor, J. Electrochem. Soc. 159 (5) (2012) J188–J192.
- [6] H. Ju, X. Deng, Z. Weng, Q. Wu, B. Wang, Y. Ma, H. Wang, LiSr₃SiO₄Cl₃-a novel host lattice for Eu²⁺-activated luminescent materials, Ceram. Int. 42 (6) (2016) 6846-6849
- [7] F. Liu, Y. Fang, J. Hou, N. Zhang, Z. Ma, Garnet-based red emitting phosphors $Li_6MLa_2Nb_2O_{12}$: $Eu^{3+}(M=Ca, Sr, Ba)$: photoluminescence improvement by changing crystal lattice, Ceram. Int. 40 (2) (2014) 3237-3241.
- [8] V. Sivakumar, U.V. Varadaraju, Synthesis, phase transition and photo-luminescence studies on Eu³⁺-substituted double perovskites—a novel orange-red phosphor for solid-state lighting, J. Solid State Chem. 181 (12) (2008) 3344-3351.
- [9] Y.P. Liu, H.R. Fuh, Y.K. Wang, Expansion research on half-metallic materials in double perovskites of $Sr_2BB'O_6$ (B=Co, Cu, and Ni; B'=Mo, W, Tc, and Re; and BB'=FeTc), Comput. Mater. Sci. 92 (2014) 63-68.
- [10] Y. Huang, H.J. Seo, The Spectroscopy and micro-structure of Eu³⁺ ions doped double perovskite Ba₃Y₂WO₉, J. Electrochem Soc. 158 (7) (2011) J215–J220.
- [11] S.K. Gupta, M. Sahu, P.S. Ghosh, D. Tyagi, M.K. Saxena, R.M. Kadam, Energy transfer dynamics and luminescence properties of Eu(3+) in CaMoO₄ and SrMoO₄, Dalton Trans. 44 (43) (2015) 18957–18969.
- [12] F. Cheng, Z. Xia, M.S. Molokeev, X. Jing, Effects of composition modulation on the luminescence properties of Eu(3+) doped $Li_{1-x}Ag_xLu(MoO_4)_2$ solid-

solution phosphors, Dalton Trans. 44 (41) (2015) 18078-18089.

- [13] H. Sun, Q. Zhang, X. Wang, C. Bulin, R.J. Xie, Strong red emissions in Pr³⁺doped (K_{0.5}Na_{0.5})NbO₃-CaTiO₃ diphase ceramics, J. Am. Ceram. Soc. 98 (2) (2015) 601-606.
- [14] L. Zhang, B. Sun, Q. Liu, N. Ding, H. Yang, L. Wang, Q. Zhang, Novel layered perovskite Sr₃Ti₂O₇:Eu³⁺ phosphor with high-efficiency luminescence enhanced by charge compensation, J. Alloy. Compd. 657 (2016) 27–31.
- [15] Z. Fen, T. Wanjun, J. Ballato, Tunable color of Eu²⁺/Mn²⁺ coactivated Na₅Ca₂Al
- (PO₄), via energy transfer, J. Am. Ceram. Soc. 97 (10) (2014) 3252–3256.
 [16] H. Yu, D. Deng, L. Chen, D. Chen, J. Zhong, H. Zhao, S. Xu, Luminescent properties of novel Ca_{2,89}Mg_{0,11}(PO₄)₂:Eu²⁺ single-phase white light-emitting phosphor for white LEDs, Ceram. Int. 41 (3) (2015) 3800-3805.
- [17] S. Ye, C.H. Wang, Z.S. Liu, J. Lu, X.P. Jing, Photoluminescence and energy transfer of phosphor series Ba_{2-z}Sr_zCaMo_{1-y}WyO₆:Eu,Li for white light UVLED applications, Appl. Phys. B 91 (3-4) (2008) 551-557.
- [18] L. Zhang, P. Han, Y. Han, Z. Lu, H. Yang, L. Wang, Q. Zhang, Structure evolution and tunable luminescence of $(Sr_{0.98-m}BamEu_{0.02})2Ca(Mo_{1-n}Wn)O_6$ phosphor with ultraviolet excitation for white LEDs, J. Alloy. Compd. 558 (2013) 229-235.
- [19] Z. Xia, J. Sun, H. Du, D. Chen, J. Sun, Luminescence properties of double-perovskite Sr₂Ca_{1-2x} Eu_xNa_xMoO₆ red-emitting phosphors prepared by the citric acid-assisted sol-gel method, J. Mater. Sci. 45 (6) (2009) 1553-1559.
- [20] L. Zhang, Q. Liu, N. Ding, H. Yang, J. Zhang, Q. Zhang, Enhanced Luminescence of Double Perovskite Na(La,Gd)MgWO₆: Eu³⁺ phosphor based on A-site-induced energy transfer, Sci. Adv. Mater. doi: 10.1166/sam.2015.2318.
- [21] L. Zhang, Q. Liu, N. Ding, H. Yang, L. Wang, Q. Zhang, Dual-channel enhanced luminescence of double perovskite NaGdMgWO6:Eu³⁺ phosphor based on alternative excitation and delayed quenching, J. Alloy. Compd. 642 (2015) 45-52.
- [22] J. Hou, X. Yin, F. Huang, W. Jiang, Synthesis and photoluminescence properties of NaLaMgWO₆:RE³⁺(RE=Eu, Sm, Tb) phosphor for white LED application, Mater. Res. Bull. 47 (6) (2012) 1295-1300.
- [23] X. Yin, Y. Wang, F. Huang, Y. Xia, D. Wan, J. Yao, Excellent red phosphors of double perovskite Ca2LaMO6:Eu (M=Sb, Nb, Ta) with distorted coordination environment, J. Solid State Chem. 184 (12) (2011) 3324-3328.
- [24] M.C. Knapp, P.M. Woodward, A-site cation ordering in AA'BB'O6 perovskites, J. Solid State Chem. 179 (4) (2006) 1076-1085.
- [25] G. King, L.M. Wayman, P.M. Woodward, Magnetic and structural properties of NaLnMnWO₆ and NaLnMgWO₆ perovskites, J. Solid State Chem. 182 (6) (2009) 1319–1325.
- [26] L. Zhang, Z. Lu, P. Han, L. Wang, Q. Zhang, Synthesis and photoluminescence of Eu³⁺-activated double perovskite NaGdMg(W, Mo)O⁶⁻ a potential red phosphor for solid state lighting, J. Mater. Chem. C 1 (1) (2013) 54-57.
- [27] G. King, S. Thimmaiah, A. Dwivedi, P.M. Woodward, Synthesis and characterization of new AA'BWO6 perovskites exhibiting simultaneous ordering of A-site and B-site cations, Chem. Mater. 19 (2007) 6451-6458.
- [28] S. Ye, C.-H. Wang, X.-P. Jing, Photoluminescence and Raman spectra of doubleperovskite Sr[sub 2]Ca(Mo/W)O[sub 6] with A- and B-site substitutions of Eu³⁺, J. Electrochem Soc. 155 (6) (2008) J148–J151.
- [29] R. Yu, C. Wang, J. Chen, Y. Wu, H. Li, H. Ma, Photoluminescence characteristics of Eu³⁺-doped double-perovskite phosphors, ECS J. Solid State Sci. 3 (3) (2014) R33-R37.